x(x+3)+1=3(x+x^2)

Simple and best practice solution for x(x+3)+1=3(x+x^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+3)+1=3(x+x^2) equation:



x(x+3)+1=3(x+x^2)
We move all terms to the left:
x(x+3)+1-(3(x+x^2))=0
We multiply parentheses
-(3(x+x^2))+x^2+3x+1=0
We calculate terms in parentheses: -(3(x+x^2)), so:
3(x+x^2)
We multiply parentheses
3x^2+3x
Back to the equation:
-(3x^2+3x)
We add all the numbers together, and all the variables
x^2+3x-(3x^2+3x)+1=0
We get rid of parentheses
x^2-3x^2+3x-3x+1=0
We add all the numbers together, and all the variables
-2x^2+1=0
a = -2; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-2)·1
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-2}=\frac{0-2\sqrt{2}}{-4} =-\frac{2\sqrt{2}}{-4} =-\frac{\sqrt{2}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-2}=\frac{0+2\sqrt{2}}{-4} =\frac{2\sqrt{2}}{-4} =\frac{\sqrt{2}}{-2} $

See similar equations:

| 0.3(30)+0.15x=0.3(30+x) | | 9-4(5-x)=37 | | x^2=25/9 | | 2y^2+3y–8=0 | | 4/z=12/ | | 2t^2+t+9=0 | | -4=j-1 | | 10000+x=2x | | a÷3+5=14 | | 5x^2-9=x^2+55 | | 9s^2+4s+2=0 | | 82-15=x+3 | | -3=-y/3 | | d/12+4=7 | | 8m-21=54 | | v2=45 | | 12x+12=7x-3 | | -2(4x-3)=20 | | 9x^2+3x=2= | | 1.1x+3.2=7.6 | | 2=3x+16*5 | | 173-8b=6+3(9+4b) | | 196-6x^2=0 | | -10=-8-h | | -9+x/11=-2 | | 11x-9-7x=27 | | -2(4x-3)=26 | | 4(4)+7y=28 | | 25.42=5g+3.72 | | x(x+4)/2=10,5 | | 0.5x+1.5=8 | | 25.42=5g+7.2 |

Equations solver categories